

Controls Development for Hybrid Systems Dr. David Tucker, NETL

Project Vision

- ➤ We are completing system analyses required for the operable design of two representative systems: FC/GT and FC/ICE.
- ➤ We are developing and testing both supervisory control and dynamic control algorithms in advance of the fabrication of proposed cycles using NETL's cyber-physical systems.

Project Overview

Fed. funding: \$1.7 M
Length 24 mo.

Team member	Location	Role in project
National Energy Technology Laboratory (NETL)	Morgantown, WV	Project Lead; Cycle Evaluation; Cyber-Physical System Designs
Ames Laboratory (Ames)	Ames, IA	Operational Control Strategy and Dynamic Controls Development
Georgia Tech Research Institute (GTRI)	Atlanta, GA	Cycle Evaluation; Cyber-Physical Design and Construction
AK Supply, Inc.	Anchorage, AK	Design and Construction

Innovation and Objectives

Layout for the CPS reformer

Task outline, technical objectives

Development of control strategies applicable to both SOFC/GT and SOFC/ICE hybrid power systems using a cyber-physical approach

Potential Cycle Modifications

Tech-to-Market objectives

 Support the other teams by ensuring viable dynamic and supervisory control strategies

FC/ICE Hybrid Cycle Evaluation

FC/ICE Hybrid Cycle Evaluation

FC/ICE Hybrid Cycle Evaluation

Topping and Bottoming Cycle

FC/ICE Cycle: Basic Configuration, No Anode Recycle

FC/ICE Cycle: Basic Configuration, No Anode Recycle

Hybrid System Efficiency and Stack Size as a Function of SOFC Fuel Utilization and Reformer Operating Temperature

FC/ICE Cycle: Hybrid Cycle Evaluation

SOFC/ICE Configurations	Autothermal Ref.	Reformer at the Anode Exhaust					
Anode Exhaust Cooling	ICE-1	ICE-2a	ICE-2b	ICE-2c			
Preheating CH ₄ to reformer	✓						
Steam to reformer	✓	✓	✓	✓			
Add. cooling water	✓	✓	✓	✓			
Reformer		✓	✓	✓			
Preheating reformate to anode		✓					
Turbine Inlet	ICE-1	ICE-2a	ICE-2b	ICE-2c			
ICE exhaust + Turbine inlet ?	✓	✓	-	-			
Reformer Steam Generation	ICE-1	ICE-2a	ICE-2b	ICE-2c			
Intercooler		✓	✓	✓			
Turbine exhaust				✓			
ICE exhaust		✓	✓	✓			
Anode exhaust	✓	✓	✓	✓			
Cathode exhaust		✓					
Cathode Exhaust	ICE-1	ICE-2a	ICE-2b	ICE-2c			
Preheating reformate to anode	✓		✓	✓			
Preheating cathode inlet air	✓	✓	✓	✓			
Steam to reformer		✓					

FC/ICE Cycle: Comparison, ICE Cycle-2a

FC/ICE Cycle: Comparison, ICE Cycle-2b

FC/ICE Cycle: Comparison, ICE Cycle-2c

FC/ICE Cycle: Hybrid Cycle Evaluation (4 Cycles)

Hybrid System Efficiency and Stack Size as a Function of SOFC Fuel Utilization and Reformer Operating Temperature

FC/ICE Cycle: Basic Configuration, With Anode Recycle

FC/ICE Cycle: Basic Configuration, With Anode Recycle

Hybrid System Efficiency and Stack Size in SOFC/ICE Cycle as a Function of SOFC Fuel Utilization and Anode Recycle Rate to Reformer at 800K and 1000K Reforming Temperature

FC/ICE Cycle: Summary

- Behaves as a Bottoming Cycle
- Thermal Integration have small affects on system efficiency
- High fuel utilization operation is needed to achieve high efficiency.

 Anode Recycle increases efficiency. May be the key to achieve 70% efficient cycle.

FC/GT Hybrid Cycle Evaluation

FC/GT Hybrid Cycle Evaluation

Hybrid System Efficiency and Stack Size as a Function of SOFC Fuel Utilization and Reformer Operating Temperature

T T	450/	500/	550/	C00/	<i>(50)</i>	700/	750/	900/	050/	000/
U _f	45%	50%	55%	60%	65%	70%	75%	80%	85%	90%
70%		600K	600K	600K	600K	600K	600K	600K		
Efficiency			700K	700K	700K	700K	700K	700K		
Target					800K	800K	800K			
dT/dx										
$(<10^{\circ}\text{C/cm})$					700K					
			800K	800K	800K					
	900K	900K	900K	900K	900K	900K	900K			
	1000K	1000K	1000K	1000K	1000K	1000K	1000K			
T _{solid} - T _{gas}							600K	600K	600K	600K
(< 80°C)					700K	700K	700K	700K	700K	700K
(')			800K	800K	800K	800K	800K	800K	800K	800K
	900K	900K	900K	900K	900K	900K	900K	900K	900K	900K
	1000K	1000K	1000K	1000K	1000K	1000K	1000K	1000K		
C _{IT}							600K	600K	600K	600K
(< 850°C)					700K	700K	700K	700K	700K	700K
(1000 0)			800K	800K	800K	800K	800K	800K	800K	800K
	900K	900K	900K	900K	900K	900K	900K	900K	900K	900K
	1000K	1000K	1000K	1000K	1000K	1000K	1000K	1000K	1000K	1000k
T _{IT}				600K	600K	600K	600K	600K	600K	600K
(<1300°C)			700K	700K	700K	700K	700K	700K	700K	700K
(<1300 C)	800K	800K	800K	800K	800K	800K	800K	800K	800K	800K
	900K	900K	900K	900K	900K	900K	900K	900K	900K	900K
	1000K	1000K	1000K	1000K	1000K	1000K	1000K	1000K	1000K	1000F
PreC				NA	600K	600K	600K	600K	600K	600K
riec					NA	700K	700K	700K	700K	700K
					NA	NA	800K	800K	800K	800K
							NA	900K	900K	900K
TT A	600K	600K	600K	NA						
HA					NIA					
	700K	700K	700K	700K	NA					
	800K	800K	800K	800K	NA	NA				
	900K	900K	900K	900K	900K	900K	NA			
	1000K	1000K	1000K	1000K	1000K	1000K	1000K	NA	NA	NA

Hybrid System Efficiency in SOFC/GT Cycle as a Function of Anode Recycle Rate to Reformer, SOFC Fuel Utilization and Reformer Operating Temperature

SOFC Stack Size in SOFC/GT Cycle as a Function of Anode Recycle Rate to Reformer, SOFC Fuel Utilization and Reformer Operating Temperature

$U_{\rm f}$	45%	50%	55%	60%	65%	70%	75%	80%	85%
70%	600K	600K	600K	600K	600K	600K	600K	600K	
Efficiency	(5, 8%)	(A1I)	(All)	(All)	(All)	(All)	(All)	(All)	
Target	700K	700K	700K (All)	700K	700K	700K	700K (AII)	700K	
·	(AR)	(AR)		(AII)	(All)	(All)		(All)	
	800K (30, 40%)	800K (20-40%)	800K (AR)	800K (AR)	800K (All)	800K (All)	800K (All)	800K (40%)	
	(30, 4076)	900K	900K	900K	900K	CAID	US117	140707	
		(50%)	(50%)	(50%)	(50%)				
dT/dx			-		600K	600K			
(<10°C/cm)					(10%)	(10%)			
(~10 C/cm)			700K	700K	700K	700K			
			(25%)	(AR)	(AR)	(AR)			
		800K	800K	800K	800K	800K	800K		
		(40%)	(All)	(All)	(AII)	(AR)	(30,		
							40%)		
	900K	900K	900K	900K	900K	900K	900K	900K.	
	(A.II)	(AII)	(AII)	(A10)	(All)	(AII)	(AII)	(40,	
								50%)	
$(T_{solid} - T_{gas})$						600K	600K	600K	600K
(< 80°C)						(All)	(AII)	(All)	(All)
					700K	700K	700K	700K	700K
		-			(All)	(All)	(All)	(All)	(All)
		800K	800K	800K	800K	800K	800K	800K	800K
	in North	(40%)	(AII)	(All)	(All)	(AII)	(All)	(All)	(AII)
	900K	900K.	900K	900K (All)	900K	900K (All)	90060	900K (All)	900K (All)
	(All)	(All)	(Aff)	(MIII)	(All)		(A11)		
C_{IT}						600K (All)	600K (AII)	600K (AII)	600K (AII)
(< 850°C)					700K	700K	700%	700K	700K
					(All)	(AII)	(All)	(All)	(A11)
		800K	800K	800K	800K	800K	800K	800K	800K
		(40%)	(All)	(AII)	(AII)	(AII)	(All)	(All)	(All)
	900K	900K	900K	900K	900K	900K	900K	900K	900K
	(AII)	(All)	(All)	(A10)	(All)	(All)	(All)	(AII)	(All)
Tπ			600K						
(<1300°C)			(All)	(A10)	(All)	(All)	(All)	(All)	(A11)
(~1300°C)		700K	700K	700K	700K	700K	700K	700K	700K
		(All)	(All)	(All)	(All)	(AII)	(AII)	(All)	(AII)
	800K	800K.	800K						
	(A11)	(AII)	(AII)	(All)	(All)	(AII)	(All)	(All)	(All)
	900K	900K	900K	900K	900K	900K	900K	900K	900K
	(A11)	(All)	(AII)	(All)	(All)	(AII)	(AII)	(All)	(AII)
STCR>2:1	600K	600K	600K	600K	600K	600K	600K.	600K	600K
	(AII)	(All)	(All)	(All)	(All)	(All)	(All)	(All)	(AII)
	700K	700K	700K	700K	700K	700K	700K	700K	700K
	(AII)	(A11)	(All)	(All)	(All)	(All)	(All)	(All)	(A11)
	800K	800K	800K	800K	800K	800K	800K	800K	800K
	(All)	(A11)	(All)	(A1I)	(All)	(AII)	(All)	(All)	(All)
	900K	900K	900K	900K	900K	900K	900K	900K	900K
	(AH)	(AII)	(All)	(All)	(All)	(All)	(AII)	(All)	(All)

FC/GT Cycle: Autothermal Reformer

Anode Recycle Comparison

	0% Anode	Recycle	With Ano	de Recycle	Comparison		
Reforming Temperature	Max. System Efficiency	Fuel Utilization	Max. System Efficiency	Fuel Utilization	Efficiency Gain (% point)	Change in SOFC Size, (AR)	
600K	73.7%	60%	74.7%	60% (10%AR)	1.0%	5.2%	
700K	72.9%	65%	74.8%	55% (20%AR)	1.9%	-3.6%	
800K	71.3%	70%	75.4%	50% (40%AR)	4.1%	-4.6%	
900K	68.4%	80%	71.3%	55% (50%AR)	2.9%	-7.0%	

Comparison of Optimal Conditions in SOFC/GT Cycle with and without Anode recycle

Hybrid System Efficiency and Stack Size as a Function of SOFC Fuel Utilization and Reformer Operating Temperature

$ m U_f$	45%	50%	55%	60%	65%	70%	75%	80%	85%	90%
70%	600K									
Efficiency	700K									
Target	800K									
		900K								
		1000K								
dT/dx										
(<10°C/cm)			700K	700K						
			800K	800K	800K					
	900K	900K	900K	900K	900K					
	1000K									
T _{solid} - T _{gas}							600K	600K	600K	600K
(< 80°C)						700K	700K	700K	700K	700K
				800K						
	900K									
	1000K									
C_{IT}						600K	600K	600K	600K	600K
(< 850°C)					700K	700K	700K	700K	700K	700K
				800K						
	900K									
	1000K									
T_{IT}			600K							
(<1300°C)			700K							
	800K									
	900K									
	1000K									

Hybrid System Efficiency in SOFC/GT Cycle as a Function of Anode Recycle Rate to Reformer, SOFC Fuel Utilization and Reformer Operating Temperature

Stack Size in SOFC/GT Cycle as a Function of Anode Recycle Rate to Reformer, SOFC Fuel Utilization and Reformer Operating Temperature

U_{f}	45%	50%	55%	60%	65%	70%	75%	80%
70% Efficiency	700K (All)	700K (All)	700K (All)	700K (All)	700K (All)	700K (All)	NA	NA
Target	800K (All)	800K (All)	800K (All)	800K (All)	800K (All)	800K (All)	800K (All)	800K (All)
	900K (AR)	900K (All)	900K (All)	900K (All)	900K (All)	900K (All)	900K (All)	(4 223)
dT/dx (<10°C/cm)	(AK)	(AII)	700K (All)	700K (All)	700K (All)	700K (15,	NA	NA
(<10 C/CIII)			800K	800K	800K	20%) 800K	800K	
	00017	900K	(All) 900K	(All)	(All) 900K	(20- 40%)	(40%) 900K	
	900K (All)	(All)	900K (All)	900K (All)	900K (All)	900K (20, 30%)	900K (40, 50%)	
$(T_{\text{solid}} - T_{\text{gas}})$ (< 80°C)						700K (All)	NA	NA
(100 0)		800K (40%)	800K (30, 40%)	800K (All)	800K (All)	800K (All)	800K (All)	800K (All)
	900K (All)	900K (All)	900K (All)	900K (All)	900K (All)	900K (All)	900K (All)	900K (All)
CIT (< 850°C)					700K (All)	700K (All)	NA	NA
(< 050 C)			800K (20- 40%)	800K (All)	800K (All)	800K (All)	800K (All)	800K (All)
	900K (All)	900K (All)	900K (All)	900K (All)	900K (All)	900K (All)	900K (All)	900K (All)
TIT (<1300°C)				700K (AR)	700K (All)	700K (All)	NA	NA
(<1300 C)			800K (40%)	800K (AR)	800K (All)	800K (All)	800K (All)	800K (All)
		900K (50%)	900K (30- 50%)	900K (AR)	900K (All)	900K (All)	900K (All)	900K (All)
STCR>2:1	700K (All)	700K (All)	700K (All)	700K (All)	700K (All)	700K (All)	NA	NA
	800K (All)	800K (All)	800K (All)	800K (All)	800K (All)	800K (All)	800K (All)	800K (All)
	900K (AR)	900K (AR)	900K (AR)	900K (AR)	900K (AR)	900K (AR)	900K (AR)	900K (AR)

FC/GT Cycle: Summary

- Thermal Integration
 - Expands cycle capabilities
 - Enhances system flexibility
 - Obviates the need for Anode Recycle
 - Requires complicated control strategies
- On-anode reforming is not justified if thermal integration can be realized

FC/GT Cycle: Exploration of Potential Cycle Modifications

FC/ICE Cycle: Exploration of Potential Cycle Modifications

Real Time Reformer/Fuel Cell Model Reconfiguration

Design, Fabrication and installation of CPS Reformer

Preliminary design is completed for the CPS reformer.

Design, Fabrication and installation of CPS Reformer

Hyper Facility Modification: Internal Combustion Engine

Control Strategy development: Startup

Risks

Schedule

